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APSTRACTi Since the work of van der Waals on gases and Mie and

Grtfneisen on solids which produce an equation of state of the form

p - G(vT) NkT/v + p. (v)

mzny theoretical equations of state have been developed which can
be put into the above form. Despite this fact it has been almost
a universal fad to describe equations of state through the dimen-
sionless compressibility factor, F(v,T) = pv/NkT instead. It is
shown here that considerable useful information is discarded when
the latter form is used. In particular an analysis of p. and
G(v,T) for the Lennard-Jones Devonshire free volume theory and
the equation of state results obtained by the Monte Carlo method
have shown that these approaches lead to essentially the Mie-
GrUneisen equation at high density when the temperature is low
enough. At higher temperatures for high density and for all
temperatures at lower densities the two theories come close to
the usual theories for dense fluids. In addition, the functional
relations for G(v,T) are sufficiently simple to be replaced by
analytic functions to facilitate the applicatizn of the theories
to practical problems. It should even be possible to empirically
improve on the original theories by making the empirical equations
conform to our best knowledge of the states, solid or fluid, being
described. For illustration an analytic fit to the Monte Carlo
result for a Lennard-Jones 6-12 potential is presented. A break-
down of Lennard-Jones result for the second virial coefficient is
appunded.
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ON THE EQUATION OF STATE OF COMPRESSED LIiIDS AND SOLIDS

This report !r, an analysis of two classically important equations
of state for molecular systems of non-ionic, non-metallic mole-
cules. The immediate purpose of this analysis was to arrive at
a better understanding of the equation of state problem for a
simple fluid or solid so that a better equation of state can be
formulated for the description of detonation parameters; pressure,
tempt-rature, density, velocities, isentrcpes, and composition
for the detonation of condensed explosives. The results deacribed,
however, should have a much broader application. The analytic
form of an equation of state u3e here or a similar treatment,
depeuding on the model, makes it rossible to critically examine
many theoretical equations. This would assist the writer and the
user in establishing the merits, range of validity, and defects
of each theory.

The work was performed under NOL Tank MAT 03L 000/ZR 011 01 01
PrO52; Dynamic Properties of Solids.

A related report which discusses this work with more emphasis
on the problem of detonation parameters was presented by the
author, at the 12th International Symposium on Combustion at
Poiters, France on 15 July 1968. It will be published in the
proceedings which will probably be available in late 1969.

E. F. SCHREITER
Captain, USN
COT4der

C. ARONSON
By direction
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1. INTRODUCTION

Since the introduction of the virial expansion by H. Kammerlingh
Onnesi for the compressibility factor F(v,T) - pv/NkT of non-ideal
gases it has been common practi'-e to describe the behavior of equations
of state by showing how the function F(v,T) varied with volume and
temperature. Though there may be merit in this description when the
density is moderate, i.e., below the normal density of a liquid, it
now appears that a more descriptive dimensionless factor is available
for states ranging in density all the way from the ideal gas to con,-
pressed solids or liquids. The parameter is obtained by analogy to
the treatment of solids and to the van der Waals equation. The
equation of state of solids has been successfully treated by splitting
the pressure into two dominant terms; one which is purely volume
dependent and derivable from an average potential function and one
which is largely thermal in nature related to the lattice vibrations
in the solid. This approach leads to an equation of state attributed
to Mie and Gruneisens which for a monatomic solid may be written as

p = VCvT/V - dE /dv (1)

for which the energy is assumed to be separable and given by

E = Ej (T) + E, (v) (2)rwith F,(T) - JCv(T)dT" The dimensionless coefficient %, the

Gr~neisen parameter, is treated as a constant or a function of v
onlv. For monatomic solids above the Debye temperature Cv is essen-
tially a constant having the value 3Nk, and hence the first term on
the right of Eq. (1) could be written as

CvCT/v = GNk T/v . (3)

By substituting Eq. (3) into Eq. (1) with G - G(v,T) one arrives at
a very general equation of state which not only describes a solid
state but also is of use in describing liquid and gaseous states, i.e.

p = G(v,T)NikT/v + p• (4)

in which p. is &n internal pressure term derived from M(v). The
compressibility factor for Eq. (4) is

F(v,T) - G(v. T) + pv,/NkT . (5)

In the case of compressed solids, p, is the dominant term for p.
Consequently, it is far more useful to examine the behavior cf G and
P. independently rather than F. It is readily seen that Eq'&. (4)
and (5) are equally applicatl'e to states of moderate density. In the
limit for large volumes p,.-- 0 and G -- 1 to give the ideal qas
equation. Over the range from ideal cas to about that of a normal
liquid, one might expect G to increase with decrease of volume in a
way similar to the behavior of the van der Waals equatiop or typical
virial equations such as the Boltzmann equation of state for a gas
composed of hard or compressible spherical molecules. In the range

References may be found on page o
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of volume from the normal solid and below, on the other hand, the
behavior of the normal solid is that G should decrease with decrease
in volume. This leads us to expect that G should have a maximum
value at volumes near that of the normal liquid state. Furthermore,
unlike the compressibility factor G should fall below 1 only if
attractive terms other than in p. are present. It thus appears that
an examination of G rather than F would shed considerable light on
(a) the compression and compressibility of very dense "gases" such
as the explosion products in a detonation of a condensed explosive,
(b) the states reached by shock compression of liquids, or solids,
and (c) the transition from the liquid to the solid state.

The utility of Eq. (4) is further enhanced if we consider it in

the lijht of a well-known thermodynanric relation

p + (%E/av)T T(iýp/BT) v (6)

If, in addition, Eq. (2) is generalized to

E - E1 (vT) + EOCv) (7)

we find it useful to define three pressure terms:
a. a volume dependent internal pressure, po - -dE./dv,
b. an internal pressure term which depends on both volume

and temperature, p, - _(bE,/bv)T, and
c. a thermal pressure term, pT - T(ap/?T)v"

Eq. (6) then becomes

p = T(7p/aT) - dE(,/dv - (QEl/,v)T = PT + pm + P1  • (8)

It is easy to see that p, arises from a volume dependence of C .By
definition Cv - (AE/AT)v - (EEI//T)v. Then (7Cv/bv)T = ;JEI/?Iýv

Thus if Cv depends on v, p, will be a function of T and,
therefore, non zero. if Cv is independent of v, p, must vanish. For
Eq. (4) pT - GRT/v + RT*(bG/BT) 1v and pL - -RT9(bG/bT) /v. Thus
if G is a function of T, p, wily be non-zero. This indicates that G
will be a function of T if Cv is a function of v and conversely.

In the original Grffneisen expression, Eq. (1), V, as applied to

metals and inorganic solids is treated as a constant or as a function
of v only. But also Cv is usually considered to be constant (the

equation best applies above the Debye temperature). If Cv is volume

dependent then V may also have to be a function of T. In that case,

Eq. (4) may be just as good a working basis as Eq. (1).

liquid-solid regions of molecular materials is not easy. There are,

however, two theoretical approaches which have been aimed to describe

this density region for spherical molecules. Both are based on pair-

wise additivity of pair potentials for an extended system of molecules.

They are the free volume equation of state exemplified by the treat-

ment of Lennard-Jones Devonshire"", LJD, and the Monte Carlo, MC,
equation of state treatment '". Both of these theoretical approaches

confirm in a general way the expected behavior of G(v,T). We there-

2
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fore recommend the form of Eq. (4) in preference to the usual forms$
for F(V,T) as a better description for the equation of state. We
propose to call G(v,T) a generalized GrUneisen parameter. The LJD
and MC results will be discussed below. Both approaches also confirm
the expected behavior of the specific heat, Cv, in going from the
gaseous region to the region of solid densitiew This, too, will be
discussed.

2. THE LENNARD-JONES DEVONSHIRE EQUATION OF STATE

Lennard-Jones and Devonshire' devised a cell model to describe
the equation of state of a liquid (or colid?) in the reg:`on from
critical density to very high density. In this model the pressure
arises from two terms; one due to the mean spacing of moleculez in
a face-centered cubic configuration, pm(v), and one de to the motion
of each molecule in a cell bounded by its near neighbors considered
to be at rest, PT + p1 .

A reexamination by the present author of the excess poter'tial
experienced by a molecule in a cell 3hows that for v/v, about 1
or slightly less than 1 (v, = Nr.3 /7/2 for an FCC configuration;
r 0 is the molecular separation at the minimum of a pair potential),
the extra potential due to displacement, r, of the central molecule
is appro:imately quadratic in r when the displacement is simll. This
implies near to harmonic motions in the system and therefore the LJD
equations should be representative of a nearly harmonic solid at
these densities if the temperature is low. As the density or dis-
placement increases the excess potential becomes less harmonic; the
Grtfneisen parameter should then be that of an anharmonic solid. G
will here be less than the values G. computed from the potential
Lunction in the zero degree limit. When v/v, is abort 1.2 and greater
the excess potential begins to look more like a square-well. In this
volume region the equation of state should appear to be more like that
of a dense gas. At very large volumes the LID solution is forced to
give the ideal ga- limit. Thus an examination of G(v,T) for the LJD
model should not only show the solid-like behavior at high density
and a gas-like behavior at low but also give information
about the temperature dependence of the Grtniisen parameter.

The original LID equations with refinements to include second
and third nearest neighbors for the excess potential have been
tabulated by Wentorf, et al from comaputer runs with the LU 6-12 pair
potential. The result.ng ecruation of state is of the form of Eq. (5)
with

G(v,T) - 1 +(4 --_/kT) " A (9)

and
:rv-/nT - (12cm/kT) (140)

where cm is the ma •itude of the pair potential minimum. In the above

A - (v,/v), g*i/G - (v0 /v)' gm/G (11)

3
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and
B - 2.0219 (v,/v)4 - 2.4090(v,/v)* (12)

(The coefficients in Eq. (12) would be 2 if only nearest neighbors
were taken into consideration; hJere all pair potentials are considered
for computing the average potential.) The g's and G, are functiuns
of T as well as v. They are represented by integrals which cannot
be expressed analytically, hence they were tabulated. Two tables
are of interest to us here; (a) the compressibility factor, F(v,T)
and (b) the specific heat of gas imperfection vs reduced temperature
I - kT/Cm and reduced vclume v/v 0 . The table of Cv-Cv (ideal)
shows the specific heat to increase from the ideal gas value
Cvi - 3Nk/2 to very nearly the classical solid value 3Nk at high
density and moderate temperature. The other table is not so explicitly
clear. F(v,T) ranges from 1 at low density, high temperature to
negative values at v/v 0 >l at low temperature and then to extremely
high values for v/v 0 <l at low temperatures (see Table la). The
significa.i. consequences of tne theory regarding equation of state are
completely obscured by not filtering out the volume dependent pressure,
PO.

Fortunately G(v,T) can be easily computed from Eq's (5), (10),
and (11) since B in Eq. (12) is a aimple analytic expression. This
nas been done for the values of F(v,T) shown in Table la. The
results are shown in Table lb and in Figure 1. Two consequences of
tae LJD theory are immediately apparent from Figure 1. First, at
low temperature G(v,T) has a maximum which shifts toward lower volume
as the temperature increases. Second, the function is greater than
1 over a wide temperature range and the isotherms show an essentially
monotone shift to the left as a increases. It appears that isotherms
could be readily fit by an analytic function to connect the LJD
equation to a complete analytic form to any desired degree of
precision. In addition, the use of p. and G to describe the
equation of state provides greater flexibility for a closer exami-
nation of tne effect of changes in the form of the potential func-
tion on the equation of state.

3. THE MONTE CARLO EQUATION OF STATE

The Monte Carlo method for an equation o0 state due to Metropolis*,
et al has been evaluated by wood and Parker* for the LJ 6-12 potential.
In the paper by Fickettl graphs of A(E'/RT) and &(pv/RT-l) are pre-
sentedO to show the consequences of the numerical calculations.
Also shown are some results for the LJD free volume theory."0 We
note that A(pv/RT) is, in fact, G(v,T) - (p-p,)v/RT.9 With this
interpretation it becomes clear that Fickett and wood"'recognized the
merit of subtracting mut the volume dependent pressure. Their re-
sults for EV/RT (the excess energy due to specific heat being a func-
tion of volume as well as temperature) indicates for MC that at v/vO<l
an additional 3pecific heat of about 3Nk/2 io added to the ideal
gas value as required in going from an ideal gas to a classical
solid. The G(v,T) behavior for MC, Figure 2, is qualitatively
similar to ti at of LJD. A much sharper maximum (essentially a peak)

4
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is seen for the isotherms and the curves are flatter to the left of
this break. The 4 = 2.74 isotherm was not fit by a curve in
Reference 7, but the sharp peak which is indicated is probably real.
This behavior was predicted near the melting point by Lennard-Jones
and Devonshire"1 in their theory of melting.

The Monte Carlo method appears to be a powerful tool for
establishing the equaticn of state in the high density regime. What
we have learned from its use with the LJ potential can serve as a
guide for generating the thermal G(v,T) term for other potentials
as well. It appears to give a far better description of the prep
erties of a molecular aggregate than does the cell model of Lennard-
Jones and Devonshire. It would now be extremely valuable to extend
the MC computation to use other potential functions, e.g. the Morse
potential or the modified Buckingham (Expo-6) potential which are
believed to be more accurate descriptions for non-ionic non-metallic
substances at high c-nsit. In the absence of this knowledge, we
attempt in the next section to formulate an analytic equation of
state based on the preceding work of Fickett and Wood.

4. AN EMPIRICAL FIT TO THE MONTE CARLO EQUATION OF STATE

Of the two examples given, the MC method appears to be the more
accurate. The model in contrast to the cell model is truly solid-
like in the dense region and gas- or liquid-like in the less dense
rcgion. The behavior of G(v,T) suggests that the high density branch
can be represented by a generalized GrUneisen parameter for a quasi-
harmonic solid while the liquid-gas branch at lower densities might
be represented by a virial expansion using a temperature dependent
covolume parameter. (The curves on the right of Figure 2 show the
volume to vary approximately as i/'A/4 for any constant value of
G(v,G).) We propose to represent the liquid-gas branch by a modi-
fication of the hard sphere virial expansion in v by replacing the
constant covolume b with a temperature dependent covolume b(T) or
b(•) varying as !/•t4* This temperature dependence is in agreement
with the behavior in the second virial coefficient result of Lennard-
Jones' , 13.

The virial equation (Eq. 3.6-1 of Reference 1) is used to de-
fine G(vT) as

G(vT) I + B(T)iv + C(T)/v' + D(T)/v 5 ........ (13)

in which B, C, and D, etc., are related to the repulsive part of the
second virial coefficient as formulated in Reference 12 (see Appendix
A, ;q. (A-4)). .e assume-

B(T) b(T) b

C(T) .625 b

D(T) .2869 b' (14)

7(T) .115 r'

4



NOLTR 68-214

where b(T) - C/ (3/4)B0 /41/4 = 1.7330 CB%/01/' for the IJ (6-12V
pctential.. The Pquation of state for the moderate density region
(A Z 2.7) Is completed by adding on the volume dependent pressure
term as given in Eq. (12). The attractive part of the second virial
coefficient as approximated in Eq. (A-4) is omitted. The complete
equation written iii terms of A is:

p N -n 4 G(v,A) +

12NjIn[2.0219 (v,/iv)4 - 2.4090 (v,/v)vj , 15)

G(v,8) v 1 + x + .625xg +.2869X + .115x4 ; (16)

where Y= b(T),/v . (17)

For comparison with Figure 2 it is necessary to express Be in
terms of vo. From the definitions v0 = NZ r03/2 and B, - 2tNO0

3 /3,
and from the relation (ao/ro) 3 -'f7 we find B10 2-nv,/3. Good fit
of Eq. (16) to the MC data is found when C = 0.91 provided the fifth
virial coefficient E(T) is zero, Figure 3. When the 5 virial co-
efficients are used the function is too stiff, i.e. it risea too
rapidly with decreasing v/v 0 . It must be emphasized that Eq. (15)
is limited to the fluid region and cerses to apply when the solid
branch is reached. For the solid region we propose a volume
dependent Grtneisen term of the form

() = go + g,(v/v 0 )3  . (18)

The MC results suggest g. = 6.3, gq = .. Gs(v), with these con-

stants is shown in Figure 3. Eq. " ) with these constant2
approyimates 0.9 times the Dugdale-MacDonald ttumula result for
a nearest neighbor calculation of the Gruneisen parameter. In
defining the equation of state the lesser of the values Gs(v)
or G(v,8) is to be used. The equation of state is. in fact two
equations. There will be an obvious discontinuity in the partial
derivative (3p/6v)T at the volume at which G(v.T) = Gs(v). Through
this volume region there will be a first or second order transition
and free en-irgy arguments can be used to establish the equilibrium
conditions.

5. DISCUSSION

The utility of separating variables and thereby defining a
thermal pressure term for a general equation of state should be quite
clear from the ryimpies cited. By so doing it becomes possible to
examine the results of complex statistical mechanical calculations
and arrive at an understanding of their phycical implication much
moi~e clearly. Examination of G(v.T) for the LJD cell model sugqests
that the model is more descriptive of an anharmonic solid than of a
fluid icr v/v,>l. By comparison with the Monte Carlo method the
etfect of imposing lopg range order in a region where such order
does not exist becomeb readily apparent. This point is not revealed
when one examines and compares F(vT) for the two methods.

6
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The logical separation of variables from the theoretical
calculations simplifies the syntheses of empitical equations. One
which can be readily handled is given. The empirical relations so
derived can be more easily used checked and modified to reproduce
experimental thermrodynamic properties. Comparison of the LJ second
virial coefficient results with MC and LiT? indicates that p6 (v) is
incorrectly defined by the mean lattice positions of molecules when
the volume is large. A more precise statistical description is needed
to bridge P0 (v) in the vclume region from the normal solid to the
ideal cas.

At this point a comment on the hard sphere molecule and the
viria) coefficients for it appear to be in order. Data of Alder and
Wainwriqht 1 4 on MC calculations for the hard sphere molecule has been
plotted in Figure 2. To plot these curves the hard sphere diameter
has been taken to be a the value of r on the LJ potential at which
the potential is zero Lvo (Alder) = v0 (this work) /7/21. It is
interesting to note that the computer runs show two distinct branches,
solid and fluid. The order-disorder transition is seen to occur,
surprisingly, at just about where it would be expected for the nor-
mal melting of real molecular solids. By comparison with the MC
results for an LJ potential one sees that the contribution of the
potential function is to determine the transition volume as a func-
"tion of temperature. (The potential function also supplies the in-
ternal pressure term which is necessary tc obtain a normal melting
pcint.) For the hard sphere molecule the transition is independent
of temperature since G (or F) is a function of volume only. Aside
from its use for transition observance, the solid branch is of no
great significance. At volumes less than the transition volume G,
in real molecular systems, is dominated by an approach to harmonic
oscillation; the extremely large values of F(v) of the rigid sphere
cease to describe the equation of state behavior of real molecules
correctly.

A further conclusion which can be drawn from the solid-fluid
transition in the MC computations is that the transition is deter-
mined by the effective size of the molecule as a function of tcmpera-
ture. In this regard the recent theory of Kraut and Kennedy 1  on
melting temperature vs volume would appear to be amenable to theo-
retical treatment in terms of the covolume change with temperature.
It is suggested that by an inverse relation information about the
potential function could be obtained at high density from experimental
data on melting point as a function of volume.

One last point; ir the case of rapid compression, as in a
shock wave in a liquid or disordered solid, or in a detonation of a
solid molecule, it is very likely that the solid branch for G(v,T)
will differ from the MC results of Fickett and Wood because of dis-
order. One might expect the generalized Grifneisen parameter for a
disordered solid to differ from the results reported. But the
difference is unlikely to be predicted by an extension of the fluid
branch as the volume decreases. The exact behavior is a problem yet
to be solved. A discussion on the application of the idea3 presented

7
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here to the problem of defining the equation of state for dense
product states of condensed explooives was presented at the 12th
Symposium on Combustion, Pvltiers, France in July 1968.16
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APPENDIX A

Lennard-Jones 1',' has given a statistical mechanic solution
for the second virial coefficient based on a bireciprocal potential.
His equations 13 may be written as

2 s/(n-m)
B(e) = T r.Nro (m/n) f(A) (A-I)

s/(n-m) in 3  r3
f(B) - F(y) = yL[(---) - 7 3 y /rnJ (A-2)

nan
and (n-m)/ny - (m/n)-m/n [-n n-S] 

(A-3)

where m and n are the attractive and repulsive exponents and A is
the reduced temperature kT/em . r(x) represents the gamma function
of the argument x and r 0 is the mcleculr separation at equilibrium.
It is immediately apparent that the coefficient of f(O) is just
NkO6o - B0 so that Eq. (A-2) for F(y,) is just B(@)/Bc,. For m = 7P
n - 12, we find that the first term in B (from Eq. (A-2) and (A-3)
varies as O-V/4. To establish the behavior of the second term,
Eq. (A-2) was solved for the two terms in B(O)/B 0 using a high
speed computer and a subroutine for r(x)17. Twenty terms were used
in the summation. The result for B(A)/Bo, Table A-i, is in complete
agreement with the result published in Reference 1,

In Table A-i b(@)/B 0 is defined as the first term on the right
of Eq. (A-2); A(4)/4 is defined as the second term on the right of
Eq. (A-2). Then A(R) is just equivalent to van der Waal's a. On
examining the table we find that A(e) deviates only about ±4% from
a constant value 4.3 over the range from the normal boiling point to
the critical temperature (.8<8<1.4). There is a minimum in A(8)
at 0 - 1.6. Above this temperature A(A) increases very slowly with
temperature. The result indicates that B(A) above 9 = 1.6 can be
represented bv an analytically simple function given as

B(O) = Borl.733/AR 4 - A(A)/@1 ; A(A) = a, + a,0l/2 . (A-4)

with a, - 3.480, at - .5282; B(O) is represented to within 1% for
8>10 and about ± .03 units for 10>0>1.4. The fit could be improved
in the low temperature region if desired. The Lennard-Jones second
virial coefficient thus reduces in essence to that of the van der Waals
equation of state with the attractive term a(1•) = NCMBO (a1 + a,41/9)
havin) a weak dependence on temperature and a repulsive term b(A) -
Bo/8OI4. If the term containing a. were treated as a correction to
b(O) then "a" would be a constant.

The second virial coefficient has been solved" for hard sphere
molecules with an attractive potential of the form u = -um,(./r)
C7 being the molecular diameter. A simple approximation to the result
given by Mayer and Mayer" for th4 van der Waals a is

10
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a = 3Nbu 0/(m-3) . (A-5)

Eq. (A-5) can be related to the attractive part of a bireciprocal
potential if b is taken as B,, and u. is taken as the attractive
energy at the corresponding diameter, ao. For the special case
n = 2m it then turns out that u, = 4 cm. Thus

a = 12NemBo / (m-3) (A-6)

for comparison with A(B). For m = 6 Eq. (A-6) gives a/NCmB = 4
which is only a few per cent less than the mean value of A(A). We
have rerun the LJ second virial coefficient calculatir.ns for m = 4.5,
n = 9 to see whether the dependence of A(S) on m agrees with the
predicted value, 8, of Eq. (A-6). The agreement wa'ý positive. A(4)
for m = 4.5 had a minimum value of 8.30 and %;ery nearly double thi
values shown in Table A-1 over the entire ringe of n computee.

There is an alternate approach for replacing the numerical
results of Table A-1 by an analytic approximation. The value of
b(n) is redefined as

b(8) /Bn = 1.7330C/91/4 (A-7)

and A(ý) is redefined as

A(1) = nrb(n) - B . (A-8)

It was found that if C = 0.91, A(P) is very nearly a constant
with the mean value being 4.1. It has its greatest value of 4.41
at A = 20 and least values of 3.906, 3.81 at 6 = 2 and 80 respevtively
in the range of A from 0.8 to 80. This interpretation indicates that
over a wide range of q the attractive term may be represented as a
constant to within 10% or less. The diminished covolume parameter
defined in Eq. (A-7) is used in Section 4 for the empirical fit to
the Monte Carlo results. In that application A(P) is assumed to
be zero.

We conclude that the LJ second virial coefficient at moderate
and high tonineratures cAn be renresented bv an attractive term and
covolume both mildly temperature dependent. The attractive term is
very nearly that of hard sphere molecules with an attractive pair
potential. These findings differ with a remark by Lennard-Jonests

which says "In the var der Waals molecular model the repulsive and
attractive parts of the field are in separate regions of Eace and
it is not surprising that their contributions to the statisti 4 al
stress should be separable. It is not tn be expected that in other
models the effects of the repulsive and attractive fields can be so
distinguished." It should be mentioned that Lennard-Jones refers to
the second virial contribution to the internal pressure as a statisti-
cal pressure to distinguiph it from p,, the derivative of E0 , which at
high density is a much larger contribution to the pressure. We note
that the attractive pressure, a/v', in van der Waals eqiation and as
approximated here differs significantly from the attractive contriba-
tion to p0 in ý:q. (10). The latter is of the form (const/vs).

II
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LIST OF FIGURES

Figure 1 G(v,T) = (p-p 0 )v/NkT from the LJD Free Volume Theory;
circles and solid curves from Reference 5, x's
and dashed curve from Reference 10. The dimensionless
temperatures, e = KT/Cm top to bottom are 0.7, 1, 2,
7, 20, 100, 150, 400. Curves labeled (a) and (b) are
G, for a solid based on the Dugdale and MacDonald formula
(Reference D. J. Pastine, Phys. Rev. 138, A76 7 (1965)).
(a) is calculated from the p0 of Sq. TT5) (b) from p0
based on nearest neighbor interactions.

Figure 2 G(v,T) from Monte Carlo Method, Reference 7. Values of
A are * - 100, E= 20. A - 5, v - 2.74. The dotted
curves are for hard sphere molecules. Reference (14)
(f) - fluid branch, (s) - solid branch.

Figure 3 Comparison of Eq's (16) and (18) with Monte Carl"
results. Solid curves on right, Eq. (16), curve labeled
(a) Eq. (18). MC results labelled as in Figure 2 The
dashed curve is the LJD result for q - 20 for dirt-:t
comparison.
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The work of van der Waals on gases and Mie and Gruneissn on solids
produce ecuations of state of the form p = G(v,T) NkT/v + po (v).
Many more recent theoretical studies have led to results expressible
in the sahe form. Despite this fact it has been almost a universal
fad to describe equations of state through the dimensionlass
compressibility factor, F(vT) - pv/NkT instead. This paper shows
that much useful information is discarded when the latter form is
used. An analysis of p. and G(v,T) for the Lennard-Jones Devonshire
free volume theory and the equation of state results obtained by the
Monte Carlo (molecular dynamics) method has shown that both studies
lead to essentially the Mie-Grfneisen equation at high density when
the temperature is low enough. At higher temperatures for high densit
and for all temperatures at lower densities the two theories come
close to the usual theories for dense fluids. The functional
relations for G(v,T) are sufficiently simple to be replaced by
analytic functions to facilitate application of the theories to
practical problems. It appearE that empirical iiaprcmements on the
oriqiLal theories can also be made on the basis of new knowledge
about the states under consideration. For illustration an analytic
fit to the Monte Carlo result for a Lennard-Jones 6-12 potential is
presented. A breakdown of Lennard-Jones result for the second virial
coefficient is appended.
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